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Summary

Background. Phenotypic heterogeneity of cancer cells within solid tumours poses
a major obstacle to therapy and management of disease relapse. Accumulating
evidence indicates that the emergence of intratumour phenotypic heterogeneity
is an eco-evolutionary process driven by spatial variations in the distribution of
abiotic factors, including oxygen, which support the creation of distinct local niches
whereby cells with different phenotypic characteristics can be selected.

Methods. We present a space- and phenotype-structured model for the eco-
evolutionary dynamics of cancer cells within solid tumours. Our model consists of a
system of nonlinear partial differential equations (PDEs) for the local cell population
density and the local oxygen concentration. Integrating our model with clinical data
from malignant melanoma patients, we use a formal Hamilton-Jacobi approach to
assess the impact of tissue vascularisation on intratumour phenotypic heterogeneity.

Main results. The results of our formal analysis and numerical simulations
demonstrate how cells in different phenotypic states can be selected within the
same solid tumour depending on the distance from the blood vessels. Moreover, our
results establish a relation between the degree of tissue vascularisation and the level
of intratumour phenotypic heterogeneity, measured either as the equitability index
or the Simpson diversity index, which could be used to inform targeted anticancer
therapy.

Model description

Independent and dependent variables

• Spatial position: r ∈ Ω ⊂ R2, with Ω representing the 2D cross-section of a
vascularised tumour tissue.

• Cell phenotypic state: x ∈ [0, 1] ⊂ R modelling the normalised level of ex-
pression of a hypoxia-responsive gene.

• Local cell population density at time t ≥ 0: n(t, r, x) ≥ 0.
• Cell density and local mean phenotypic state:

I(t, r) =

∫ 1

0
n(t, r, x) dx and X(t, r) =

1

I(t, r)

∫ 1

0
xn(t, r, x) dx .

• Total cell number and fraction of cells in the phenotypic state x:

N(t) =

∫
Ω
I(t, r) dr and F (t, x) =

1

N(t)

∫
Ω
n(t, r, x) dr .

• Local concentration of oxygen: s(t, r) ≥ 0.

Model equations

• The evolution of the local population density, n(t, r, x), and the local oxygen
concentration, s(t, r), is governed by the following coupled parabolic PDEs

∂tn = R
(
x, I(t, r), s(t, r)

)
n︸ ︷︷ ︸

cell proliferation and competition

+ α∂2
xxn︸ ︷︷ ︸

phenotypic
variations

+ β∆rn︸ ︷︷ ︸
cell dispersal

(1)

∂ts = βs∆rs︸ ︷︷ ︸
diffusion

− ηs

∫ 1

0
g(x, s)n(t, r, x) dx︸ ︷︷ ︸

consumption by the cells

− λss︸︷︷︸
decay

+ σ(t)χ(r)︸ ︷︷ ︸
influx from
blood vessels

(2)

complemented with zero Neumann boundary conditions (NBCs).

• The function χ(r) ≥ 0 represents the map of the blood vessels in the tumour
tissue, while the function σ(t) ≥ 0 models the oxygen inflow rate.

• The cell fitness function R
(
x, I(t, r), s(t, r)

)
is defined as

R
(
x, I(t, r), s(t, r)

)
= f(x) + g

(
x, s(t, r)

)︸ ︷︷ ︸
proliferation

− κ I(t, r)︸ ︷︷ ︸
competition

.

• The function f(x) models the cell proliferation rate in the absence of adequate
oxygen supply (i.e. in hypoxic conditions), while the function g(x, s) is the cell
proliferation rate in oxygenated environments (i.e. in normoxic conditions).

• To ensure analytical tractability of the model, we consider the following bio-
logically realistic definitions

f(x) = ϕ
[
1− (1− x)2

]
and g(x, s) = γ

s

θs + s

(
1− x2

)
with ϕ� γ .

Parameter Biological meaning
α Rate of spontaneous phenotypic variations
β Cell motility coefficient
κ Death rate due to cell competition
ϕ Maximum rate of cell proliferation in hypoxic conditions
γ Maximum rate of cell proliferation in normoxic conditions
θs Michaelis-Menten constant of oxygen
βs Diffusion coefficient of oxygen
ηs Conversion factor for cell consumption of oxygen
λs Natural decay rate of oxygen

Formal asymptotic analysis

• We consider a stationary oxygen distribution s(·, r) = s̄(r). To capture the fact
that phenotypic variations and cell dispersal occur on slower time scales compared
to cell proliferation and competition, we define α = β = ε2 for some small ε > 0.

• To explore the evolutionary dynamics of the population over many cell genera-
tions, we consider the hyperbolic time scaling t → t/ε and study the asymptotic
behaviour of the solution to the following rescaled equation for ε→ 0

ε ∂tnε = R
(
x, Iε(t, r), s̄(r)

)
nε + ε2 ∂2

xxnε + ε2 ∆rnε .

• If the initial cell population is locally monomorphic, i.e. under the assumption

n0
ε(r, x) = I0(r) eu

0
ε(r,x)/ε with u0

ε(r, x) s.t. n0
ε(r, x) −−−⇀

ε→0
I0(r) δ(x− x̄0(r)),

in the asymptotic regime ε→ 0 the population remains locally monomorphic, i.e.

Iε(t, r) −→
ε→0

I(t, r), nε(t, r, x) −−−⇀
ε→0

I(t, r)δ(x− x̄(t, r)) .

• The locally selected phenotypic state x̄(t, r) satisfies the canonical equation

∂tx̄ = −(∂2
xxu(t, r, x̄))−1 ∂xR(x̄(t, r), I(t, r), s̄(r)),

where the function u(t, r, x) satisfies the constrained Hamilton-Jacobi equation∂tu = R(x, I(t, r), s̄(r)) + (∂xu)2 + |∇ru|2

max
x∈[0,1]

u(t, ·, x) = 0 = u(t, ·, x̄) (with NBCs)

and the pair (x̄(t, r), I(t, r)) is such that R
(
x̄(t, r), I(t, r), s̄(r)

)
= 0.

• At equilibrium, the local cell density and the locally selected phenotypic state
depend on the local oxygen concentration, i.e.

I(t, r) −→
t→∞

I∞(s̄(r)) and x̄(t, r) −→
t→∞

x̄∞(s̄(r))

with

I∞(s̄(r)) =
1

κ

γs s̄(r)

θs + s̄(r)
+

ϕ2

ϕ+ γs
s̄(r)

θs+s̄(r)

 , x̄∞(s̄(r)) =
ϕ

ϕ+ γs
s̄(r)

θs+s̄(r)

(3)

Numerical solutions
Integration of the model with clinical data

The clinical images [Schuh et al. Dermatol Ther., 7:187-202, 2017] show
the blood vessel distribution in two different cross sections of a malignant
melanoma. These images were used to define the blood vessel map χ(r). The
other panels display the oxygen distribution (in units of 10−6), the cell den-
sity (in units of 108) and the locally selected phenotypic state obtained by
solving numerically the PDEs (1) and (2). The cell density and the pheno-
typic state match exactly with the asymptotic values given by equation (3).

Impact of tissue vascularisation on intratumour heterogeneity

Equitability index

E(t) = −
∫ 1

0

F (t, x) logF (t, x)

log
(
N(t)

) dx

and Simpson diversity index

S(t) =

(∫ 1

0
F 2(t, x) dx

)−1

as functions of the blood vessel density

% =
1

|Ω|

∫
Ω
χ(r) dr.

The plots in the red boxes show the
oxygen distribution (top panels) and
the selected phenotypic state (bottom
panels) for three sample values of %.


