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Models of linear viscoelasticity

Models of linear viscoelasticity can be represented by a
combination of elastic springs and viscous dampers con-
nected in parallel (e.g. Kelvin-Voigt model) and/or in
series (e.g. Maxwell model).
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Each model of viscoelasticity is characterised by a consti-
tutive equation, relating the stress o to the correspondent
strain € dictated by the way elastic and viscous compo-
nents of the model are connected. Up to four components,
the constitutive equation can be written as
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where, for y(t,:) € C?*(R.), the operators .Z,[y]| and
Zp|y ]| are defined as

Zaly] = a20,y + a1y + aoy (2)
Lyy] = b205y + b18ry + boy (3)

with parameters related to the elastic moduli (F;) and
viscosity coefficients (n;) of the elastic and viscous com-
ponents of the model:

Generic 4-parameters model | as aq agp bs | by | by
Linear elastic model 0 0 1 0 0 E
Linear viscous model 0 0 1 0 n 0
Kelvin-Voigt model 0 0 1 0 n | B
Maxwell model 0 % % 0 1 0
SLS model 0| & |3(+2)jo |1 |2
Jeffrey model 0 | 1+ % % m | E | 0

Each model of viscoelasticity captures different properties

of viscoelastic materials:

Instantaneous| Delayed | Viscous| Instantaneous| Delayed | Permanent | Stress
elasticity elasticity | flow recovery recovery| set relaxation
Linear elastic model v v
Linear viscous model v v N. A.
Kelvin-Voigt model v v
Maxwell model v v v v v
SLS model v v v v v
Jeffrey model v v v v v

* Viscous flow: under constant stress, the strain increases

linearly with time at a rate proportional to the stress and

inversely proportional to viscosity.
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Summary

Background: Mechanochemical models of pattern formation in biological tissue have helped us shed light on the role

different mechanical cues have in cell aggregation phenomena, by considering the mechanical interaction between cells and

the extracellular matrix (ECM). The cells and ECM are modelled as a linearly viscoelastic continuum, usually assumed to

be a Kelvin-Voigt material, but this may not be the best model of viscoelasticity to use for biological tissue. In [1] we extend

the theory of mechanochemical pattern formation to include a wider variety of models of linear viscoelasticity.

Results: Our results clearly indicate that models of linear viscoelasticity presenting viscous flow (linear viscous, Maxwell,

Jeffrey model), which are better suited to represent soft tissue, have much higher pattern formation potential than those

which do not (linear elastic, Kelvin-Voigt, standard linear solid model). This further highlights the need to consider

experimentally determined rheological properties of the materials under study when formulating mechanochemical models

of pattern formation.

Mechanical model

e Let t € [0,00) indicate time and =z € [0,1] C R the

spatial position in a 1D domain. Then n(t,x), p(t,x)
and u(t,z) indicate the cell density, ECM density and
ECM displacement at time ¢t and position x respectively.
The ECM (small) strain is given by e(t,z) = O,u(t, x),
and the corresponding stress o(t, ) will be given by (1).

The conservation equations for the cell density n(t,x)
and the ECM density p(t, x), and the force-balance equa-
tion are given by the following PDEs

Orn = DO? n —adr(ndyp) — 0z (nOsu) +rn(l —n) (4)
diffusion haptotaxis advection logistic

growth

Orp = — 0z(pdru)
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complemented with periodic boundary conditions and
initial conditions comprising small spatially inhomo-
geneous perturbations from the spatially homogeneous
steady state (n, p,u) = (1,1,0).

e Under the constitutive equation (1), equation (6) gives
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Linear stability analysis results
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Maxwell

Perturbing the spatially homogeneous steady state
(n,p,u) = (1,1,0) with small spatially inhomogeneous
perturbations proportional to exp|yt 4+ ikx|, under the
same parameter set Py, we obtain the dispersion relations
Re(v(k?)) plotted on the left for the different models of
viscoelasticity. We expect perturbations to grow in time
for models of viscoelasticity presenting viscous flow (in
red) and to disappear for the others. Py = {D = 0.01,
= 0.05, s = 10, A = 0.5, 7 = 0.2, p = 0.005,
r=FE=n=1,F = E2 =0.5FE, n1 =n2 = 0.5n}.
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Numerical simulations

1D simulations for the Kelvin-Voigt and
the Maxwell model
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Starting from small random initial perturbations
of the steady state (n, p,u) = (1,1, 0) (left) we ob-
serve that, under the same parameter set Py, the
perturbations quickly disappear using the Kelvin-
Voigt model (centre), while patterns arise with
the Maxwell model (right). This is in agreement
with the dispersion relations obtained under F
(¢f. top right for Kelvin-Voigt, bottom left for
Maxwell).

Quick look into the extension to 2D
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Example of pattern that may arise in 2D for
Maxwell model from random initial perturbations
of the steady state (n,p,u) = (1,1,0), which re-
sulted to be stable under the same perturbation
for Kelvin-Voigt model (omitted) under the same
parameter set. This was obtained under simplify-
ing assumptions on the parameters, as the exten-
sion to 2D of the constitutive equations for mod-
els of viscoelasticity (other than Kelvin-Voigt) re-
quires an explicit distinction between elastic and
viscous contributions to the matrix displacement.

Numerical method

Numerical solutions are constructed using the
Method of Lines. Finite difference and finite vol-
ume approximations of the spatial derivatives are
used, together with first order upwinding for the
flux terms, to obtain a system of ODEs, solved
implicitly with the MATLAB solver odelbi |2].




